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Abstract: The interlayer coupler is one of the critical building blocks for optical interconnect based
on multilayer photonic integration to realize light coupling between stacked optical waveguides.
However, commonly used coupling strategies, such as evanescent field coupling, usually require a
close distance, which could cause undesired interlayer crosstalk. This work presents a novel interlayer
slope waveguide coupler based on a multilayer chalcogenide glass photonic platform, enabling light
to be directly guided from one layer to another with a large interlayer gap (1 µm), a small footprint
(6 × 1 × 0.8 µm3), low propagation loss (0.2 dB at 1520 nm), low device processing temperature, and
a high bandwidth, similar to that in a straight waveguide. The proposed interlayer slope waveguide
coupler could further promote the development of advanced multilayer integration in 3D optical
communications systems.

Keywords: chalcogenide glass photonic devices; multilayer photonics; interlayer slope waveguide
coupler

1. Introduction

The exponential growth in data communications and computing requires scalable,
high-yield, and cost-effective integrated photonic systems. In recent years, large-scale and
high-density multilayer photonic integrated circuits (PICs) with higher integration have
developed rapidly, due to their new functionality and high energy efficiency [1–7]. Silicon
(Si) photonics could be a suitable integration platform due to its unique complementary
metal-oxide-semiconductor (CMOS) compatibility, but challenges in stacking up single
crystal silicon layers impede the development of stacked multilayer silicon photonics [8]. In
addition, the hybrid integration of silicon with other materials (such as silicon nitride [9,10],
amorphous silicon [11,12], and polycrystalline silicon [13]) suffer from complexities in
fabrication, such as the requirements of high-temperature deposition for low-loss thin films,
chemical-mechanical polishing for planarizing the structures, and the wafer-bonding pro-
cess for heterogeneous integration. In contrast, chalcogenide glasses (ChGs) are amorphous
inorganic materials with unique properties such as infrared transparency, high nonlinearity,
and a high refractive index. Their amorphous nature enables them to be both monolithically
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and heterogeneously integrated with a wide variety of materials at a low deposition temper-
ature, compatible with the COMS back-end process. These remarkable material properties
make them a viable platform for future multilayer optical communications systems [14–23],
mid-infrared integrated photonic devices [22,24,25], sensors [26–28] and flexible photonic
devices [29–32].

One of the main challenges of multilayer technology lies in coupling light between
layers. Current coupling schemes include evanescent couplers, grating couplers, and direct
3D waveguide coupling. The high-efficiency evanescent coupler [2,33–38] usually requires
a close distance and a large footprint, inducing a lower integration density and more
serious interlayer crosstalk, respectively. Grating couplers [8,39,40] are highly sensitive
to wavelength and light polarization, which imposes severe bandwidth limitations on
their coupling performance. Moreover, multiple diffracted orders of grating couplers,
when coupled into waveguides in other layers, could lead to crosstalk or other undesirable
interactions. Thus, higher demands on the design of high-performance, compact, high-
density optical routing strategies are necessary. The 3D waveguide design [12], using an
interlayer slope waveguide coupler to directly connect the waveguides in different layers,
allows a more considerable interlayer distance, a higher coupling efficiency, and a smaller
footprint, thus making it more suitable for high-density multilayer integration.

Here, we report on an interlayer 3D slope waveguide coupler fabricated using ChG
material at low temperatures and even close to room temperature. We theoretically ana-
lyzed the mode conversion between straight and interlayer slope waveguides for different
slope angles. The interlayer gap and the slope angle were designed to be 1 µm and 10◦

to optimize the transmission efficiency and avoid interlayer crosstalk. The Ge23Sb7S70
(GSS) interlayer slope waveguide coupler with 800 nm width and 450 nm height was
designed to only support the fundamental mode. By adjusting the photoresist adhesion,
we can flexibly control the angle of the interlayer slope waveguide coupler. The fabricated
interlayer slope waveguide coupler shows an insertion loss of 0.2 dB at 1520 nm for the
transverse electrical (TE) mode. Unlike an interlayer grating coupler and an evanescent
coupler, the interlayer slope waveguide coupler has an ultra-large bandwidth similar to
that of a straight waveguide.

2. Design and Fabrication

We designed and optimized the structure of the interlayer waveguide coupler by
3D Finite Difference Time Domain (FDTD) simulation. Figure 1a shows the schematic
diagram of the interlayer slope waveguide coupler based on the ChG platform. Due to
its superior chemical and physical stability [41] and low loss in the S + C + L band [42],
GSS was adopted as the waveguide core material. The refractive index of GSS was 2.26
at 1520 nm. The waveguide had a width (w2) of 800 nm and a height (h2) of 450 nm,
which only supported the fundamental mode. The height of the interlayer slope (h1) was
set as 1 µm to avoid interlayer crosstalk. The coupling efficiency of the interlayer slope
waveguide coupler with different slope angles θ was calculated by 3D FDTD at 1520 nm for
TE0 mode, as shown in Figure 1b. As the slope angle increases, the slope length decreases,
and the loss gradually increases. When the slope angle was 5–20◦, the transmission loss of a
single slope waveguide was below 0.36 dB. When the slope angle was 40◦, the transmission
loss of the slope waveguide sharply increased to 3.51 dB.
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Figure 1. Design and simulation of a GSS interlayer slope waveguide coupler. (a) Schematic struc-
ture of a GSS interlayer slope waveguide coupler. (b) 3D FDTD-simulated transmission character-
istics of the TE polarized mode for the GSS interlayer slope waveguide coupler with different slope 
angles at 1520 nm wavelength. Simulated electric field distribution of the GSS interlayer slope wave-
guide coupler with (c) 10° and (d) 40° slope angles at 1520 nm. 
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coupler with a slope angle of 10° at 1520 nm corresponding to the red dotted circle in 
Figure 1b. The input port is at the bottom layer, and the output is at the top layer. The 
straight waveguide’s effective refractive index (neff) calculated by 3D FDTD was 1.849, 
while the neff of the interlayer slope waveguide at 10° was around 1.852. The light from 
the straight waveguide encountered a slight mode mismatch, causing a slight insertion 
loss of 0.14 dB. Most light was confined to the waveguides as they passed through the 
interlayer slope waveguide, supporting only the fundamental mode. Figure 1d shows the 
electric field transmission in the interlayer slope waveguide with a slope angle of 40°, cor-
responding to the blue dotted circle in Figure 1b. The straight waveguide’s neff was also 
around 1.849, while the neff of the slope waveguide at 40° was around 1.922. the light from 
the straight waveguide encountered a more considerable mode mismatch, causing an in-
sertion loss of 3.51 dB. After passing through the slope waveguide, only 45% of the energy 
could be transmitted from the bottom to the top. A smaller slope angle introduced lower 
loss but resulted in a larger footprint. Therefore, there was a tradeoff between device size 
and insertion loss. Here, we chose an interlayer slope waveguide with an angle of 10° to 
achieve both small size and low insertion loss. 

The device fabrication was carried out at the Westlake Center for Micro/Nano Fabri-
cation and the ZJU Micro-Nano Fabrication Center. Figure 2a shows the fabrication pro-
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was deposited on a commercial 4-inch silicon wafer with a 2 µm thickness oxide layer by 
plasma-enhanced chemical vapor deposition (PECVD, manufactured by Samco Inc., 
Kyoto, Japan). The photoresist (NR9 1500PY) was spin-coated onto the wafer and pat-
terned by optical lithography (ABM Mask Aligner). The sample was immersed in buffered 
oxide etch solution (BOE, HF: NH4F = 15:2); the etching rate was 200 nm/min. At the edge 
of the photoresist area, the lateral etching of BOE induced a fixed angle slope [44]. The 
photoresist on the sample surface was removed by soaking in acetone for 2 h, followed by 
O2 plasma treatment for around 3 min to completely remove the residual organic material 
on the sample. A 450-nm-thick GSS film was deposited on the sample by thermal evapo-
ration at room temperature, and a layer of 50-nm thick silicon oxide was sputtered onto 
its surface, which can prevent the etching of GSS material by the alkaline solution. The 

Figure 1. Design and simulation of a GSS interlayer slope waveguide coupler. (a) Schematic structure
of a GSS interlayer slope waveguide coupler. (b) 3D FDTD-simulated transmission characteristics of
the TE polarized mode for the GSS interlayer slope waveguide coupler with different slope angles
at 1520 nm wavelength. Simulated electric field distribution of the GSS interlayer slope waveguide
coupler with (c) 10◦ and (d) 40◦ slope angles at 1520 nm.

The insertion loss of the interlayer waveguide was analyzed by coupling mode the-
ory [43]. Figure 1c shows the electric field transmission in the interlayer slope waveguide
coupler with a slope angle of 10◦ at 1520 nm corresponding to the red dotted circle in
Figure 1b. The input port is at the bottom layer, and the output is at the top layer. The
straight waveguide’s effective refractive index (neff) calculated by 3D FDTD was 1.849,
while the neff of the interlayer slope waveguide at 10◦ was around 1.852. The light from
the straight waveguide encountered a slight mode mismatch, causing a slight insertion
loss of 0.14 dB. Most light was confined to the waveguides as they passed through the
interlayer slope waveguide, supporting only the fundamental mode. Figure 1d shows
the electric field transmission in the interlayer slope waveguide with a slope angle of 40◦,
corresponding to the blue dotted circle in Figure 1b. The straight waveguide’s neff was
also around 1.849, while the neff of the slope waveguide at 40◦ was around 1.922. The light
from the straight waveguide encountered a more considerable mode mismatch, causing
an insertion loss of 3.51 dB. After passing through the slope waveguide, only 45% of the
energy could be transmitted from the bottom to the top. A smaller slope angle introduced
lower loss but resulted in a larger footprint. Therefore, there was a tradeoff between device
size and insertion loss. Here, we chose an interlayer slope waveguide with an angle of 10◦

to achieve both small size and low insertion loss.
The device fabrication was carried out at the Westlake Center for Micro/Nano Fab-

rication and the ZJU Micro-Nano Fabrication Center. Figure 2a shows the fabrication
process flow of the interlayer slope GSS waveguide coupler. Firstly, 1-µm-thick silicon
oxide was deposited on a commercial 4-inch silicon wafer with a 2 µm thickness oxide layer
by plasma-enhanced chemical vapor deposition (PECVD, manufactured by Samco Inc.,
Kyoto, Japan). The photoresist (NR9 1500PY) was spin-coated onto the wafer and patterned
by optical lithography (ABM Mask Aligner). The sample was immersed in buffered oxide
etch solution (BOE, HF: NH4F = 15:2); the etching rate was 200 nm/min. At the edge of the
photoresist area, the lateral etching of BOE induced a fixed angle slope [44]. The photoresist
on the sample surface was removed by soaking in acetone for 2 h, followed by O2 plasma
treatment for around 3 min to completely remove the residual organic material on the
sample. A 450-nm-thick GSS film was deposited on the sample by thermal evaporation at
room temperature, and a layer of 50-nm thick silicon oxide was sputtered onto its surface,
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which can prevent the etching of GSS material by the alkaline solution. The electron beam
lithography photoresist (maN 2403) was spin-coated on the sample, and the device pattern
was patterned by electron beam exposure (EBL, manufactured by Raith Inc., Dortmund,
Germany). The sample was then etched by inductively coupled plasma (ICP, manufactured
by Leuven Inc., Xuzhou, China) using a fluorine-based atmosphere (CF4:CHF3 = 1:3) with a
selective etching ratio of 1:4 and an etching rate of 40 nm/s. An appropriate oxygen plasma
recipe can remove the residual photoresist on the surface of the device. Figure 2b shows the
scanning electron microscope (SEM) image of the focusing grating coupler on the bottom
layer with a period of 0.97 µm and a duty cycle of 0.5. Figure 2c shows the SEM image of
the interlayer slope GSS waveguide coupler with a slope length of 5.6 µm (slope angle of
10.6◦) and a waveguide width of 800 nm. Finally, a 2-µm thick PMMA was spin-coated
onto the sample as the top cladding layer.
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Figure 2. Fabrication processes of the GSS interlayer slope waveguide coupler. (a) Schematic diagram
of the fabrication process of the GSS interlayer slope waveguide coupler, SEM image of the top-view
of (b) the focusing grating coupler, and (c) the interlayer slope waveguide coupler.

The angle of the interlayer waveguide was controlled by adjusting the adhesion of
the photoresist to the substrate. A lower bake temperature could cause poorer adhesion,
resulting in the slope with a smaller angle, as shown in Figure 3 [12]. The photoresist would
collapse onto the substrate at a slope angle of 4.9◦ due to the relatively long slope length
shown in Figure 3d. Table 1 shows the slope angles for four samples at different bake
temperatures after a wet etching in BOE for five minutes. In the following measurement
section, the test sample was fabricated on sample C with a slope angle of 10.6◦ and a slope
length of 5.6 µm.
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Figure 3. SEM images of a cross-sectional view of the interlayer slope for (a) Sample A, (b) Sample B,
(c) Sample C, (d) Sample D.

Table 1. Slope angles of the four samples prepared under different photolithography conditions after
a wet-etching process for five minutes.

Photoresist Soft-Bake
Temperature

Soft-Bake
Time

Expourse Dose
at 365 nm

Post-Bake
Temperature

Post-Bake
Time Angle (◦)

Sample A

NR9 1500PY

100 ◦C 1 min 120 mJ/cm2 100 ◦C 1 min 22.0
Sample B 85 ◦C 2 min 200 mJ/cm2 85 ◦C 2 min 15.1
Sample C 75 ◦C 3 min 320 mJ/cm2 75 ◦C 3 min 10.6
Sample D 60 ◦C 4 min 400 mJ/cm2 60 ◦C 4 min 4.9

3. Results and Discussion

A broadband tunable laser system (TSL 550, manufactured by Santec Inc., Komaki,
Japan) was used to characterize the fabricated devices. The light launched from the tunable
laser was adjusted by the polarization rotator (PR) and coupled into the chip through
a vertical coupling system. In order to minimize the transmittance error of the slope
waveguide, estimated to be less than 10%, six test devices with different slope numbers
were fabricated on the same chip, as shown in Figure 4a. A straight waveguide of 300 µm
was used to connect the two adjacent interlayer slope waveguide couplers. The right
inset in Figure 4a shows the SEM image of the interlayer slope waveguide coupler, with a
slope height of 1 µm and a slope length of 5.6 µm (slope angle of 10.6◦). The transmission
spectra of six test devices were measured separately. The insertion loss of the focusing
grating coupler was around 5 dB at 1520 nm. The insertion loss per cell consisting of an
interlayer slope waveguide coupler and a 300 µm straight waveguide in the wavelength
range between 1400–1580 nm was calculated by linear fitting, as shown in Figure 4b.
The insertion loss per segment was around 0.8 dB in the wavelength range between
1400–1580 nm (limited by the transmission spectrum of the focusing grating coupler). The
inset in Figure 4b shows the linear fitting of the insertion loss at 1520 nm.
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were L is the round-trip length of the resonator. Equation (2) gives a waveguide propaga-
tion loss of 19.7 dB/cm for the waveguide on the top and bottom layer. Thus the insertion 
loss of one interlayer slope waveguide coupler is around 0.2 dB, which is slightly larger 

Figure 4. Measurement of the GSS interlayer slope waveguide coupler. (a) Top-view SEM image of
the cascaded interlayer slope waveguide couplers. Left inset: focusing grating coupler, right inset:
interlayer slope waveguide coupler. (b) Transmission spectrum of the interlayer slope waveguide
coupler, inset: linear fitting curve at 1520 nm. (c) Transmission spectrum of the MRR on the bottom
layer, inset: optical microscope image of MRR on the bottom layer. (d) Transmission spectrum of the
MRR on the top layer, inset: optical microscope image of the MRR on the top layer.

A microring resonator (MRR) was designed and fabricated on the same chip to cal-
culate the waveguide’s transmission loss at the bottom and top layers, as shown in the
insets of Figure 4c,d. The transmission spectrum of the MRR is shown in Figure 4c,d and
fitted using the Lorentz function [45,46]. The loaded quality factor (Q) could be calculated
by QL = λr

∆λ , where λr denotes the resonant wavelength and ∆λ represents the full width
at half maximum (FWHM) of the dip in the transmission spectrum. The intrinsic Q is
calculated by

Qi =
2QL

1±
√

R
(1)

where R denotes the on-resonance fraction of optical power reflected by the cavity and is
calculated by the dip’s extinction ratio (ER), and ± corresponds to the under- and over-
coupled loading condition [47,48]. The intrinsic Q value is 1.2 × 104. The waveguide
transmission loss α (in cm−1) is calculated by

α =
2πng

Qiλr
(2)

where ng represents the group index inferred from the free spectral range (FSR).

ng =
λ2

r
L× FSR

(3)

were L is the round-trip length of the resonator. Equation (2) gives a waveguide propagation
loss of 19.7 dB/cm for the waveguide on the top and bottom layer. Thus the insertion
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loss of one interlayer slope waveguide coupler is around 0.2 dB, which is slightly larger
than that obtained by simulation calculation due to the roughness on the sidewall of the
slope waveguide.

To investigate the source of light propagation loss in the waveguide, we measured
the surface roughness of the top, bottom, and interlayer slopes using an atomic force
microscope (AFM, Bruker Corporation, Billerica, MA, USA). The root-mean-square (RMS)
of surface roughness was 1.24 nm, 0.35 nm, and 0.30 nm on the top, interlayer slope,
and bottom layer, respectively, as shown in Figure 5b–d. In addition, the sidewall of the
straight waveguide has a significant degree of line-edge roughness, which can be found
from SEM in Figure 2c. Thus, smoothing the slope connection and decreasing the sidewall
and surface roughness by optimizing the fabrication process could further reduce the
waveguide propagation loss.
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Figure 5. Roughness characterization of the interlayer slope structure. (a) Top-view SEM image of
the interlayer slope, AFM image of (b) PECVD SiO2 on the bottom layer, (c) PECVD SiO2 on the
interlayer slope, (d) PECVD SiO2 on the top layer.

To highlight the role of material choice, component geometry and performance, we
compared the figures of merit in terms of optical performance and dimension with different
interlayer couplers in Table 2. The grating couplers have a relatively narrow bandwidth,
large footprint, and high insertion loss. The tri-layer crossing requires a complex fabrication
process. The double-layer waveguide evanescent couplers require a close interlayer gap
(700 nm) and a large footprint, usually exhibiting high interlayer crosstalk. A meta-structure-
based interlayer directional coupler enables the interlayer gap to be increased to 1.4 µm
to suppress the interlayer coupling; however, there is a high insertion loss that needs to
be considered. The interlayer slope waveguide coupler fabricated by Si:H allows a more
considerable interlayer distance, a higher coupling efficiency, and a smaller footprint, while
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the low device processing temperature of GSS is more compatible for the Back End of Line
(BEOL) process.

Table 2. Performance comparison of different types of interlayer couplers.

Structure Material Fabrication
Process

Deposition
Technique

Interlayer
Gap

Insertion
Loss Footprint 1 dB

Bandwidth

Grating coupler [39] c-Si – – chip-to-chip 2.8 dB 40 × 25 µm2 48 nm
Grating coupler [40] SiN LPCVD 800 ◦C 1.6 µm 2 dB 100 × 20 µm2 40 nm

Tri-layer crossing [37] Si3N4 LPCVD 800 ◦C [49] 850 nm 0.15 dB 2 × 2 µm2

(Tri-layer)
140 nm

Tri-layer vertical
coupler [38] Si3N4 PECVD 400 ◦C [50] 2.3 µm 0.5 dB 4 × 4 µm2

(Tri-layer)
80 nm

Waveguide evanescent
couplers [2] SiNx LPCVD 775 ◦C 700 nm 0.51 dB 300 × 4 µm2 –

Metamaterial-based
interlayer coupler [8] SiNx PECVD 400 ◦C [51] 720 nm 0.6 dB 10 × 5 µm2 40 nm

Metastructure-based
interlayer directional

coupler [33]
Si3N4 PECVD 400 ◦C [50] 1.4 µm 6 dB 25 × 4 µm2 76 nm

Interlayer slope
waveguide
coupler [12]

a-Si:H HWCVD 230 ◦C 1.44 µm 0.17 dB 9 × 1 µm2 similar to planar
waveguides

Interlayer slope
waveguide

coupler (this work)
GSS Thermal

Evaporation ~30 ◦C 1 µm 0.2 dB 6 × 1 µm2 similar to planar
waveguides

Our results demonstrate the ability to design and fabricate a superior coupling device
scheme that does not suffer from limitations defined for other strategies previously reported,
allowing for multiple preferred device conditions simultaneously. These enhancements
demonstrate flexibility in fabrication that can result in a large interlayer gap, a small
footprint, low propagation loss, low device processing temperature, and a high bandwidth
similar to that in a straight waveguide. Such tailorability and simultaneous performance
superiority will enable flexibility in a variety of designs.

4. Conclusions

In summary, we fabricated an interlayer slope waveguide coupler for multilayer
photonic integration based on the room-temperature-deposited GSS platform. The 3D
interlayer slope waveguide coupler directly transfers the light within the different layers
with negligible loss and interlayer crosstalk. The angle of the interlayer slope waveguide
coupler can be flexibly controlled by adjusting the adhesion of the photoresist to the
substrate. The fabricated interlayer slope waveguide coupler shows an insertion loss of
0.2 dB at 1520 nm for the transverse electrical (TE) mode. The interlayer slope waveguide
coupler had an ultra-large bandwidth similar to that in a straight waveguide. The fabricated
interlayer gap was 1 µm, the slope angle was 10.6◦. A small footprint of 6 × 1 × 0.8 µm3 of
the interlayer coupler was demonstrated. The source of insertion loss could be reduced
by optimizing the fabrication process and improving the surface and sidewall quality of
the interlayer slope structure. The proposed interlayer slope waveguide coupler could
further promote the development of advanced multilayer photonics integration in 3D
optical communications systems.
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