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Abstract: The mid-infrared (MIR, 2–20 µm) waveband is of great interest for integrated photonics
in many applications such as on-chip spectroscopic chemical sensing, and optical communication.
Thermo-optic switches are essential to large-scale integrated photonic circuits at MIR wavebands.
However, current technologies require a thick cladding layer, high driving voltages or may introduce
high losses in MIR wavelengths, limiting the performance. This paper has demonstrated thermo-optic
(TO) switches operating at 2 µm by integrating graphene onto silicon-on-insulator (SOI) structures.
The remarkable thermal and optical properties of graphene make it an excellent heater material
platform. The lower loss of graphene at MIR wavelength can reduce the required cladding thickness
for the thermo-optics phase shifter from micrometers to tens of nanometers, resulting in a lower
driving voltage and power consumption. The modulation efficiency of the microring resonator (MRR)
switch was 0.11 nm/mW. The power consumption for 8-dB extinction ratio was 5.18 mW (0.8 V
modulation voltage), and the rise/fall time was 3.72/3.96 µs. Furthermore, we demonstrated a 2 × 2
Mach-Zehnder interferometer (MZI) TO switch with a high extinction ratio of more than 27 dB and a
switching rise/fall time of 4.92/4.97 µs. A comprehensive analysis of the device performance affected
by the device structure and the graphene Fermi level was also performed. The theoretical figure
of merit (2.644 mW−1µs−1) of graphene heaters is three orders of magnitude higher than that of
metal heaters. Such results indicate graphene is an exceptional nanomaterial for future MIR optical
interconnects.

Keywords: mid-infrared; 2 µm waveband; thermo-optic switch; graphene heater

1. Introduction

Mid-infrared (2–20 µm spectral range [1]) is a practically important waveband cover-
ing a broad range of wavelengths with significant applications [2], including chemical [3],
gas [4], and biological [5] sensing, imaging [6], infrared countermeasures [7], free-space
communications [8], wind trace detection [9] and precise surgery [10]. So far, most of the
mid-infrared systems are based on benchtop instruments. Integrating critical components
at the chip level [11,12] would be an indispensable choice to achieve higher reliability, lower
cost, smaller footprint, and reduced power consumption [1]. Laser sources [13], ampli-
fiers [14], low-loss waveguides [15], wavelength gratings [16], multiplexers [17], power
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splitters [18], resonators [15], switches [19–21], photodetectors [22], and other components
for the integrated photonic circuit at MIR waveband have already been widely studied for
lab-on-chip applications.

Among the on-chip photonic components, optical switches [23] (electro-optic and
thermo-optic type) work for wavelength tuning, light intensity modulating, and optical
path switching. They are critical in optical phased array [24,25], optical sensing [26],
photonic computation [27], and optical routing [28], etc. Electro-optic switches exhibit
ultra-high-speed but suffer from high optical loss and large device size [29]. The thermo-
optic switches show advantages in high tuning efficiency, compact footprint, and low
insertion loss [30]. Most of the thermo-optic switches demonstrated so far were working at
the telecommunication window. The emerging mid-infrared applications require fast and
energy-efficient TO switches in mid-infrared waveband. High heating efficiency, low-loss
of the heaters for the phase-shifting are significant for high-performance mid-infrared TO
switch. Conventional micro-heaters of TO switches include metallic heaters and doped-
silicon heaters. Metallic heaters [31–33] were widely utilized for TO switches, but the
parasitic optical absorption from the metal required the heaters to be placed away from the
waveguide core. Thus, the heating efficiency would be low, and it becomes even severe for
devices operating at a longer wavelength. Doped-Si-heaters [34–36] generate Joule heat
directly inside the waveguides leading to high-efficient heating. However, the free-carrier
absorption of doped silicon can increase to be hundreds of dB/cm at a longer wavelength
in MIR waveband [37–40], which makes it unfavorable for low loss mid-infrared TO switch.

Two-dimensional materials [41,42] own remarkable optical and electrical properties
and can be alternative heating materials for TO switch, which are favorable for photonic
integrated circuits at MIR waveband [43]. Graphene is an exceptional heater candidate that
offers extraordinary physical properties [44–46], including ultra-wide working waveband
from visible light to microwave [47] and high thermal conductivity [48]. Most importantly,
the absorption of graphene can be tuned by dope-engineering [49]. The propagation loss
of the MIR light can be reduced to virtually zero, making it suitable for long-wavelength
operation. Graphene heaters have been integrated into polymer waveguides [50,51], which
can achieve low π phase-shift power consumption (Pπ) of 0.39 mW. However, the low
thermal conductivity of polymer leads to a long response time of 92.4 µs, and polymers also
become opaque in the mid-infrared waveband. The figure-of-merit (FOM) of a TO device
combines π-phase-shift power consumption and response time τ in the form of 1/(Pπ ·τ),
which could be used to evaluate the performance of devices based on different materials
and devices platforms [52]. Recently, graphene has also been integrated with inorganic
photonic structures with higher thermal conductivities to fabricate TO switches operated
in the telewavelength window with much faster response [48,53]. To further reduce the
power consumption without slowing down the response time, graphene heaters could be
integrated with resonators [54] or photonic crystal structures [55,56]. Silicon microring TO
switches with graphene heaters covering the microring part achieved superior performance
with a switching time of 3.6 µs and a Pπ of 9 mW, respectively [57]. Taking advantage of the
slow light effect, silicon photonic crystal waveguide TO switches with monolayer graphene
heaters on top exhibited an unparalleled switching time of 0.75 µs [55]. Graphene heater
can also be integrated into chalcogenide photonics [58]. Chalcogenide photonic-crystal
cavity with a graphene heater embedded into the center realized unprecedented energy
efficiency of 7.6 nm/mW [56]. Thus far, graphene TO switches could achieve sub-milliwatt
switching power, microsecond-level response time, and extinction ratios as high as 30 dB
at the telewavelength range. Moreover, through tuning the Fermi level of graphene, it
could be transparent in the mid-infrared waveband. Graphene would be an ideal materials
platform for mid-infrared thermo-optic switches, but no work has been reported yet.

In this context, we demonstrated the first silicon TO switch with graphene heaters
operating at 2-µm mid-infrared waveband, which is also considered a new communication
window for the next-generation optical communication [59] to meet the urgent demand
for expanding the bandwidth capacity [60,61]. We fabricated two types of graphene-
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based TO devices based on 220 nm silicon-on-insulator (SOI). Microring resonators (MRR)-
based TO switches were designed for light signal modulation, and 2 × 2 Mach-Zehnder
interferometer (MZI) TO switches were designed for lightpath routing. The MRR-based TO
switch achieved a fast 10–90% rise time of 3.72 µs, Pπ power consumption of 14.42 mW,
and comparable FOM of 0.0175 mW−1µs−1 to previously reported silicon TO switches with
graphene heaters. Our MZI device showed a high modulation depth of 27.8 dB. Lastly, a
complete numerical analysis of the device’s performance was demonstrated. The design
strategy of the graphene heater and the performance limits was given. Optimal structural
parameters and graphene with a Fermi-level of 0.43 eV for the MRR-based TO switch could
achieve an ultrahigh FOM of 2.644 mW−1µs−1.

2. Device Fabrication and Characterization Method

The schematic illustration of the MZI device is shown in Figure 1a. Our devices were
based on the SOI platform. As illustrated in Figure 1g, the graphene was coated above the
ridge waveguide with flattened silica cladding. The brief process flow is demonstrated in
Figure 1b–g. Our devices were fabricated on an SOI wafer with a 220-nm-thick device layer,
and a 2-µm-thick SiO2 box layer by multi-project-wafer (MPW) involved processes. First,
the waveguide structures were patterned by deep ultra-violet photolithography and etched
by inductive coupling plasma (ICP) process to a ridge depth of 150 nm and width of 600 nm.
Next, a layer of 1-µm-thick SiO2 cladding was deposited by plasma-enhanced chemical
vapor deposition (PECVD). Then the silica cladding was polished by chemical mechanical
polishing (CMP) to a thickness of about 300 nm (150 nm higher than the waveguides). The
titanium/gold (Ti/Au, 5 nm/100 nm) contact electrodes were patterned by electron beam
lithography (EBL) and deposited using electron beam evaporation. The contact distances
were 2.6/7 µm for the MRR/MZI-based switches, preventing the excessive absorption from
metal contacts. Then the chemical-vapor-deposition (CVD) graphene [62] was transferred
onto the samples by the wet-transfer method [63]. The loaded graphene was patterned by
i-line photolithography, and the unwanted part was etched using oxygen plasma. Finally, a
layer of polymer protection cladding was coated, and contact windows were opened for
characterization. By these approaches, two types (MRR-type and MZI-type) TO switches
were fabricated.
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Figure 1. (a) Three-dimensional illustration of the MZI-based TO switch with the graphene heater.
(b–g) Brief process flow of the TO switch with graphene heaters. (b) Waveguide fabrication. (c) SiO2

deposition as a cladding layer. (d) Chemical-mechanical planarization of the cladding. (e) Electrode
contact fabrication. (f) Graphene transfer and patterning. (g) Protection cladding coating with
electrode contact windows opened.
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The measurement setup is shown in Figure 2, where a fiber coupling system [36]
(not drawn in the figure) is used for light coupling of the devices. A computer was used
for controlling the tunable 2-µm laser (Newfocus TLB-6700) for wavelength sweeping
and processing the data stream from the data acquisition equipment (DAQ, NI USB-
6212), which was used for data synchronization between the laser and the power meter.
A polarization controller (PC) was used to adjust the polarization of the input light to
optimize the coupling efficiency. The transmitted optical signal was read by the power
meter. A source meter was used for static measurement to apply voltage and monitor the
current flowing through the graphene heaters. The peak shift of the devices and I-V/O-P
(current-voltage/transmission-power) curves could be obtained. An arbitrary waveform
generator (AWG, Siglent SDG6032X-E) was utilized to apply the modulation voltage for
dynamic characterization. The device’s optical output was connected to a photodetector,
while its photocurrent was amplified by a pulse forming amplifier (PFA). The amplified
modulated signal was recorded by an oscilloscope (Siglent SDS5104X), and our devices’
response time could be obtained.
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3. Results and Discussion
3.1. MRR-Based Switches

The MRR-type switches play an essential role in silicon photonics. The MRR can
behave as a spectral filter, which can be used for applications such as wavelength division
multiplexing and sensing. The position and the shape of the dips are very sensitive to
structural parameters. In most cases, the spectrum of the fabricated device could not
be predicted precisely because of the fabrication error. Therefore, wavelength tuning is
necessary for wavelength-relevant applications, and thermally modulating the refractive
index of the waveguide in the microring resonator is a straightforward and effective
approach. The switching function of an MRR works in the same principle [64].

We fabricated MRR-based switches with a ring radius of 40 µm and a graphene length
of 100 µm. The microscope image of the MRR-based TO switch is displayed in Figure 3a,
where the graphene shows a fan-shaped pattern. The coated waveguide area will be heated
up when applying the driving voltage to the graphene heater. This would increase the
refractive index and consequently brings in a shift of resonance wavelength.
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The resonance wavelengths of measured transmission spectra were red-shifted, as de-
picted in Figure 3b. The energy efficiency η of the switch was calculated to be 0.11 nm/mW
by fitting the curve in Figure 3c. The switch claims a Pπ of 14.42 mW, where Pπ of a cavity-
type switch is defined as the power consumption to detune the resonator by a phase shift
with a product of π and the full width at half maximum (FWHM) of the resonance peak [52].
It should be noted that, the minimum electric power to achieve decent modulation effect,
i.e., extinction ratio of 8 dB, is only about 5.18 mW (0.8 V). The Q factor of the ring resonator
under test was about 4 × 103 and the FWHM was 0.505 nm. By decreasing the propagation
loss from the waveguide (1.62 dB/cm) [65] and absorption loss from graphene (calculated
to be 132 dB/cm), the Q factor of ring resonators could be improved, and the Pπ power
consumption can be further suppressed. This could be improved by optimizing the fabrica-
tion process to reduce the scattering loss of the waveguide and doping graphene to ensure
less absorption. The sheet resistance of the heater is calculated to be about 125 Ω from the
current-voltage (I-V) curve shown in Figure 3d. Moreover, the optical transmission-power
(O-P) characterization exhibited an extinction ratio of about 9 dB. As depicted in Figure 3e,
the switch’s 10–90% rise and 90–10% fall time are 3.72 µs and 3.96 µs, respectively, via
applying a 0.8 V square-wave driven signal with a frequency of 30 kHz and a duty cycle
of 0.5. The switch realized a FOM of 0.0175 mW−1µs−1, which is the highest performance
among the reported graphene-assisted silicon TO devices operating at the 2 µm waveband.

3.2. 2 × 2 MZI Switches

The MZI-type 2 × 2 optical switch is also one of the indispensable components in pho-
tonic integrated circuits, which is conventionally constructed by two 3-dB splitters/couplers
using multimode interference (MMIs) and connecting waveguides as the two MZI arms.
By tuning the optical phase difference of the light between two arms of the MZI, the optical
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intensity distribution of the output ports can be modulated, realizing optical switching for
applications including cross-connection, optical routing, and information processing.

We fabricated balanced 2 × 2 MZI TO switches with 100-µm-long graphene on both
arms of the MZI to balance the loss difference between the two arms. The microscope
view of the switch is shown in the inset of Figure 4a. The transmission spectra of the
device without/with a 1.8 V driving voltage indicated an insertion-loss of about 2 dB and a
maximum on-off ratio of 27.08 dB, as shown in Figure 4a. The insertion loss was mainly
induced by the absorption of graphene and the insertion loss from MMI (0.35 dB per MMI),
and it could be minimized by doping the graphene, which will be discussed later. Through
tuning the voltage applied across the graphene, the temperature rising of the waveguide
varied, and the phase difference between the two arms changed.
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The light from two arms of the MZI with variable phase delay was combined by
a 2 × 2 MMI, resulting in different power distribution at the output ports. Figure 4b
demonstrates the measured O-P curve, indicating a Pπ of 57.75 mW. Such high-power
consumption was due to an extensively long contact distance which will be explained later.

The dynamic response of the switch was also characterized and demonstrated in
Figure 4c. By applying a square-wave signal with a voltage amplitude of 1.8 V, a frequency
of 30 kHz, and a duty cycle of 50%, the MZI TO switch realized a 10–90% rise time of
4.92 µs and a 90–10% fall time of 4.97 µs. Thus, the FOM of the switch is calculated to be
0.003 mW−1µs−1.
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4. Numerical Analysis and Discussion

Table 1 lists the performance of some silicon TO modulators or switches with different
kinds of heaters including the prediction of graphene-based MRR TO switch. Compared
with metallic heaters, graphene could be used as transparent heaters, and is not necessary
to be placed microns away from the waveguide to prevent parasitic optical loss. Thus,
graphene-based TO switch could achieve a shorter response time and gain superior en-
ergy efficiency benefiting from the smaller thermal mass. Our MRR TO switch is the first
achieved mid-infrared graphene-based TO switch with FOM comparable with TO switches
using doped-silicon heaters. Although the doped-silicon TO modulators show better per-
formance at present, our theoretical prediction implies that graphene is a more appropriate
heater material at MIR waveband, which will be explained in the following session.

Table 1. Performance comparison of some silicon TO devices working at 2 µm.

Device Heater η
(nm/mW)

τ (µs)
Rise/Fall

Pπ

(mW)
FOM

(mW−1µs−1) Year [Ref.]

MZI TiN N/A 15/15 32.3 0.002 2019 [32]
MZI TiN N/A 9.2/13.2 19.2 0.004 2021 [33]

MZI Doped
silicon 0.17 3.49/3.46 25.21 0.011 2021 [36]

MRR Doped
silicon 0.1 3.65/3.70 6.66 0.0405 2021 [36]

MRR graphene 0.11 3.72/3.96 14.42 0.0175 this work
MZI graphene N/A 4.92/4.97 57.75 0.003 this work
MRR graphene 0.127 3.735/- 0.123 2.644 Prediction

To investigate the theoretical performance limits of graphene-based TO-switches,
optical modeling of the waveguide modes and finite element method thermal simulations
of the graphene phase shifter were carried out using Lumerical MODE solution and
the COMSOL Multiphysics package, respectively. Figure 5a illustrates the temperature
distribution in the cross-section of the phase shifter with graphene heaters. The temperature
was fixed at 298 K for all solid boundaries, while a convective heat flux boundary condition
was implemented for the gaseous boundaries.

The thermally induced refractive index change causes the wavelength tuning of TO
switches. The wavelength shift corresponding to the refractive index could be expressed
by [66]:

∆λ = λ0
∆ne f f

ng
(1)

where λ0 is the free-space wavelength, ∆neff represents the variation of effective refractive
index, and ng is the modal group index. Based on the perturbation theory, the effective
refractive index tuning ∆neff should be given by a surface integral about temperature,
electric field, and refractive index [67]:

∆ne f f =

v (
dn
dT

)
∆T(x, y)n(x, y)|E(x, y)|2dxdy

v
n2(x, y)|E(x, y)|2dxdy

(2)

where dn/dT is the material thermo-optic coefficient. The TO coefficients are approximately
1.76 × 10−4 K−1 for silicon [68] and 1.3 × 10−5 K−1 for silicon dioxide [69] at 2 µm,
respectively. Thus, if the static and dynamic response of the graphene-on-SOI phase shifter
could be obtained by numerical simulation, we could explore the influence of design
parameters on the performance of the graphene-based thermo-optic switches.

In this section, we focus on the analysis of MRR type TO switch since it could gain
much higher FOM benefiting from the resonance effect. The critical factors for the graphene-
on-SOI phase shifter are the cladding thickness (hcl), contact distance (dc), and the resistance
of the heating region. The measured resistance of the graphene-based MRR resonators is
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125 Ω. It contained resistance (Rg) from the graphene heater and contact resistance (Rc)
between metal and graphene. Considering the sheet resistance of graphene is 1307 Ω/sq, Rc
would be 4550 Ω·µm. Thus, the divided voltage Ud applied on the graphene heater in the
simulation is equal to U·Rg/(Rt + Rc), where U is applied voltage across the electrodes. For a
given length of graphene heater, the contact resistance would keep the same while distance
between the two electrodes varied. Figure 5b plots the influence of cladding thickness
(hcl) and contact distance (dc) on the temperature of the waveguide core. Although the
increase of the contact distance dc would entail an increased divided voltage Ud on the
graphene heater, the increase of total resistance and thermal mass would lead to a decrease
in temperature change ∆Twg(x,y) in the waveguide with the increasing contact distance,
shown in Figure 5b. This is why the performance of our MZI type TO switch was worse
than that of the MRR type TO switch since the contact distance is much larger. Besides,
when the thickness of oxide cladding hcl becomes thicker, the graphene heater will keep
further away from the waveguide core. The ∆Twg(x,y) will also decrease. For an MRR type
graphene-based TO switch with a radius r of 40 µm and a heater length lh of 100 µm, the
overall wavelength shifting could be expressed as follows:

∆λ = λ0
∆ne f f

ng

Ih
2πr

(3)

Based on Equations (2) and (3), we can convert the thermal profile to the wavelength
shift ∆λ profile, which is illustrated in Figure 5c. The heating efficiency η of switches with
variable design parameters could be calculated by

η =
∆λ

∆P
(4)

where ∆P represents the change of electric power. The electric power can be calculated by
U2/Rt, where Rt is equal to Rg + Rc.
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Figure 5. Simulation of the graphene-on-SOI structure. (a) Schematic cross-section and simulated
temperature distribution of the graphene-on-SOI phase shifter with a contact distance of 2.6 µm
under a driving voltage of 0.8 V. (b) Temperature mapping and (c) wavelength shift with different
contact distances (hcl) and cladding thicknesses (dc) at 0.8 V. (d) Heating efficiency η of the device
with different hcl and dc. (e) Dynamic heating progress of the waveguide with different hcl and dc.
(f) Response time mapping with hcl and dc. Simulated (Sim) and experimental (Exp) values of our
devices are labelled in (c,d), and (f) with structural points marked by circles.
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Figure 5d plots the heating efficiency of MRR type graphene-based TO switch with
different cladding thicknesses and contact distances. The figure marked our measured
device’s experimental (Exp) and simulated (Sim) heating efficiencies. The numerical
analysis agrees pretty well with our measurement results. To be noted, only part of the
applied voltage was on the graphene heater region. The heater’s efficiency could be further
improved by minimizing the contact resistance, which will be discussed later.

The response time of the thermo-optic switch is significant for high-speed light inten-
sity modulation and optical routing. Finite element method (FEM) simulation could also be
applied to study the dynamic heating progress. The temporal evolution of the temperature
of the waveguide core was simulated under a square-wave driving bias with a period
of 30 µs, and the time-domain response progress of devices with different hcl and dc are
presented in Figure 5d. The calculated response times for different device parameters are
plotted in Figure 5e. Both the heating and thermal dissipation processes require a longer
time for a larger heating region (thermal mass), and thus smaller hcl and dc are also desired
for faster operation. The simulated response time is 3.735 µs which is very close to the
experimental results of 3.96 µs.

Here, we can notice that TO switches could achieve a higher heating efficiency and
faster response if the distance between the graphene and the waveguide and the distance
between the two electrodes are close enough. However, the overall performance of TO
switches will also be limited by the absorption from graphene heaters and the metal
electrodes. Although metal absorption is much larger than graphene, graphene is still a
lossy material if its Fermi level is low. Figure 6a illustrates the modal profile in the cross-
section of the phase shifter with graphene heaters. Based on our measurement result, the
graphene-induced total loss of the ring is 54.14 dB/cm, and the corresponding Fermi-level
(EF) of graphene was 0.25 eV. Based on this Fermi-level, we studied the performance matrix
of MRR type TO switches with different design parameters, as depicted in Figure 6b. It is
illustrated that the optical loss induced by the graphene for the integrated ridge waveguide
decreases exponentially as the cladding thickness increases. The inset shows the losses
versus hcl with dc being 2.6 µm and 7 µm, respectively, and the propagation loss from
the metal contact could be neglected if the distance between two electrodes is larger than
2.5 µm. Thicker cladding is preferred for less propagation loss, but it will sacrifice the
heating effect. Thus, if we want to design an optimal heater structure with graphene, a
compromise should be made between the heater loss and heating efficiency.

For the ring resonator, the loss directly impacts the Q factor and the FWHM of the
resonance peaks and consequently the power consumption. The power consumption
for Pπ = FWHM×π/η and the relation between the total Q factor and the FWHM is ex-
pressed by

Qtot =
λr

FWHM
(5)

where λr is the resonance wavelength. To obtain the best performance, the ring resonator
should work in the critical coupling condition where the intrinsic Q factor equals the
external Q factor:

1
Qtot

=
1

Qintrinsic
+

1
Qexternal

=
2

Qintrinsic
(6)

The intrinsic Q factor can be obtained by

Qintrinsic =
2πng

αλr
(7)

where α is the loss of the ring, including the absorption of the graphene αg and the waveg-
uide loss αwg (1.62 dB/cm). The ng is the group index of the fundamental TE mode. The
loss of the resonator is expressed by:

α = αg
Ih

2πr
+ αwg (8)
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Therefore, based on Equations (5)–(8) [66], and the modal loss plotted in Figure 6b, the
FWHM of resonator covered by graphene with the same Fermi level (0.25 eV) and length
as our device’s with different hcl and dc can be obtained and depicted in Figure 6d. In the
calculation, ng is 3.68 and λr is 2022.74 nm. Thicker cladding leads to a narrower FWHM,
implying that a smaller wavelength shift is necessary to achieve effective modulation. Based
on the FWHM, combined with the efficiency η, power consumption Pπ was calculated and
shown in Figure 6e. Finally, the FOM, which is equal to 1/(Pπ ·τ), could be obtained, and
they are plotted in Figure 6f. We have marked the experimental and numerical simulation
predicted device performance results in all three figures. All simulated performance indices
are in good agreement with the experimental results, indicating the reliability of our models.
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Figure 6. Simulation of the graphene-on-SOI structure. (a) Electric field distribution of the funda-
mental TE mode. (b) Mode loss of the fundamental TE mode versus hcl and dc with EF of 0.25 eV.
(c) Mode loss versus hcl with different EF and fixed contact distance of 2.6 µm. The red curve denotes
the mode loss of the waveguide with the metal heater. (d) FWHM, (e) power consumption Pπ and
(f) FOM mapping for the MRR device with different hcl and dc, and Fermi level of 0.25 eV. (g) FWHM,
(h) power consumption Pπ and (i) FOM mapping for the MRR device with different hcl and dc, and
EF of 0.43 eV. Simulated (Sim) and experimental (Exp) values are labeled in (d–f). Simulated values of
our devices (Device) are marked in (g–i). Star marker in (i) points out optimal structural parameters
with maximum (Max) FOM.

As discussed before, the loss induced by graphene could significantly influence the
FWHM of the resonance peak and the FOM of MRR type TO switches. Fortunately, the loss
of the graphene decreases significantly with the doping level of graphene (EF), as shown in
Figure 6c. To investigate the performance limit of the TO switch with a graphene heater, we
performed calculations based on heavier doping of graphene, i.e., EF = 0.43 eV (which is
achievable [70]). Thus, the optical loss induced by graphene could be decreased a lot. The
quality factor could be much higher, and the FWHM could be an order of magnitude smaller
than those based on graphene with a Fermi-level of 0.25 eV, as shown in Figure 6g. Besides,
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the contact resistivity could be optimized below 100 Ω µm [71], and the contact resistance
could be less than 1 Ω while currently it is approximately 45.5 Ω. Thus, most of the applied
voltage is on the graphene heater, and the power efficiency could be much higher. Under
these conditions, the FOM can be distinctly boosted. Pπ and FOM were calculated and
demonstrated in Figure 6h,i. From Figure 6i, the highest FOM (2.644 mW−1µs−1) could be
achieved with a 371-nm cladding thickness and 2.25-µm contact distance.

As mentioned, the heavily p-doped graphene heater owns obviously smaller absorp-
tion loss, and therefore the minimum FOM in Figure 6i, i.e., 0.217 mW−1µs−1 is already an
ultrahigh value. Hence, graphene TO devices would allow much larger fabrication-error
tolerance to achieve high performance than other technologies. Relatively high FOM can
be obtained with thin cladding, and the current device design can achieve an extremely
high FOM of 2.177 mW−1µs−1.

Using these models, the FOM of a switch with a metal heater could also be evaluated.
The red curve in Figure 6c is the calculated modal loss of waveguide with a metal heater
above, exhibiting absorption at least two orders of magnitude greater than those with
graphene even with high Fermi levels (0.25 eV). The FOM of a 50-nm-thick gold heater MRR
TO switch with the same cladding thickness and contact distance is only 0.005 mW−1µs−1,
which is three orders of magnitude less than that with graphene heaters. As known, the
absorption coefficient for the metal increases with the wavelength. Thus, metal heater
should be placed much further away from the waveguide core in the mid-infrared range.
On the other hand, graphene could become transparent in the mid-infrared wavelength
range through tuning its Fermi level. Thus, the FOM of graphene-based TO switches could
be much higher than those based on metal heaters. Graphene will become an exceptional
nanomaterial for future MIR photonic circuits.

5. Conclusions

We demonstrated MRR-based and MZI-based TO switches operating at 2 µm wave-
band for the first time, where single-layer graphene was adopted as the heater. For the
MRR device, the modulation efficiency was 0.11 nm/mW, corresponding to minimum
power consumption of about 5 mW. The 10–90% rise time/90–10% fall time is 3.7/3.96 µs.
Such dynamic response is close to the fastest silicon TO devices ever reported. As for the
MZI-based device, an insertion loss of 2.0 dB and an outstanding extinction ratio of 27.08
dB with broadband operation wavelength range was achieved. The switching time was
also characterized to be 4.92/4.97 µs respectively. The insertion loss could be minimized by
the chemical doping of graphene, and the relatively high power consumption can be largely
suppressed by a more appropriate design of contact distance. The numerical analysis
showed that the performance of the graphene-assisted TO switch can be improved signifi-
cantly by appropriately designing the structure of the heater and doping the graphene. The
FOM can be as high as 2.644 mW−1µs−1, which outclasses reported works. The doping
engineering can make graphene an almost transparent heater in MIR waveband, which
can be directly placed on the waveguide. Such unparalleled performance can hardly be
achieved by resorting to metal heaters or doped silicon heaters. Our work proves that
graphene heater owns exceptional advantages compared to other kinds of heaters, and
graphene is a superb photonic material for future photonic integrated circuits working at
MIR waveband.
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