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Graphene/silicon heterojunction for
reconfigurable phase-relevant activation
function in coherent optical neural networks

Chuyu Zhong 1,7, Kun Liao 2,7, Tianxiang Dai 2, Maoliang Wei1, Hui Ma1,
Jianghong Wu3,4, Zhibin Zhang 2, Yuting Ye3,4, Ye Luo3,4, Zequn Chen3,4,
Jialing Jian3,4, Chunlei Sun3,4, Bo Tang5, Peng Zhang5, Ruonan Liu5, Junying Li1,
Jianyi Yang1, Lan Li 3,4, Kaihui Liu 2, Xiaoyong Hu 2 & Hongtao Lin 1,6

Optical neural networks (ONNs) herald a new era in information and com-
munication technologies and have implemented various intelligent applica-
tions. In an ONN, the activation function (AF) is a crucial component
determining the network performances and on-chip AF devices are still in
development. Here, we first demonstrate on-chip reconfigurable AF devices
with phase activation fulfilled by dual-functional graphene/silicon (Gra/Si)
heterojunctions. With optical modulation and detection in one device, time
delays are shorter, energy consumption is lower, reconfigurability is higher
and the device footprint is smaller than other on-chip AF strategies. The
experimental modulation voltage (power) of our Gra/Si heterojunction
achieves as low as 1 V (0.5mW), superior to many pure silicon counterparts. In
the photodetection aspect, a high responsivity of over 200mA/W is realized.
Special nonlinear functions generated are fed into a complex-valued ONN to
challenge handwritten letters and image recognition tasks, showing improved
accuracy and potential of high-efficient, all-component-integration on-chip
ONN. Our results offer new insights for on-chip ONN devices and pave the way
to high-performance integrated optoelectronic computing circuits.

Neuromorphic photonics has attracted extensive attention in recent
decades1. The light propagation in photonic networks2,3 achieves the
operation of matrix computation and has exhibited the promising
potential to break the technical bottleneck of electrical networks,
considering that optical devices use photons as information carriers
and have the advantages of larger bandwidth, higher information
capacity, and lower power consumption.With the prosperity of silicon

photonics4–6, integrated ONNs have achieved exciting accomplish-
ments in artificial intelligent applications including symbol
recognition3,7, vowel analysis8, image classification9, etc.

In a neural network, the activation function (AF) introduces
nonlinearity, enabling the network to perform complicated tasks, and
has an important impact on training speed and computational
accuracy10,11. For on-chip ONNs without AF devices12,13, the nonlinear
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operation is carried out by external modulators through computer
control8,9. This scheme benefits from the flexibility of digital AF
selection, but several analog-to-digital conversion steps add latency
to the network. A growing number of efforts have been made to
develop on-chip AFs11 in all-optical or electro-optic ways, as shown in
Fig. 1a. In all-optical type AF devices, phase change materials
(PCM)3,14,15 or graphene16,17 are adopted to modify the optical power
directly by the optical signal itself through the refractive index or
absorption modification. The absence of an electric circuit can help
moderate the complexity of network design, but the optical power
threshold is relatively large (MW/cm2)16. Recently, a non-intrusive
germanium-silicon structure18 can achieve all-optical activation and
power monitoring simultaneously, but the nonlinear response is
unchangeable, lacking flexibility. Electro-optic type devices can pro-
duce reconfigurability. Indium tin oxide (ITO)19,20 film devices were
demonstrated with low power consumption, simple design but extra
photodetectors were needed tomonitor the signal intensity. Another
strategy involves integrating amicro ring resonator (MRR) intoMach-
Zehnder interferometer (MZI) circuits with phase shift electrodes7. An
increasingly popular approach is called light-splitting-and-detection
AF unit21–23, which is adopted in recently reported ONN chips24–26. In
such AF unit, input optical power is monitored by a PD in an optical
bypass, and the photocurrent is transferred to themodulation voltage
of a modulator to form a feedback circuit, finally tuning the trans-
mitted optical power. Such a strategy offers high reconfigurability but
brings higher power consumption and time delay because of the
opto-electric conversion. Nowadays, AF devices or units should seek
to achieve smaller power thresholds, lower power consumption,
shorter delay, smaller footprints, and higher flexibility. To offer new
opportunities to optical AF device, two-dimensional material-assisted
silicon photonics has exhibited intriguing potentials27,28. Specifically,
the synergistic combination of graphene with silicon-based photonic
structures has proved its ability to deliver massively enhanced device
performances, enriched functionalities and broadened operation
waveband29.

In this article, we point out that the phase shift of an AF device is
usually neglected, omitting the fact that theONNhas a complex-valued
nature, as illustrated in Fig. 1b. In addition, most classical AFs are not
symmetrical over positive and negative values, which is incompatible
with positive-only intensity values. Therefore, many classical AFs used
in real-valued neural networks are no longer applicable to complex-
valued ONNs (More discussed in Section IX in Supplementary Infor-
mation). Current methods of solving this problem includes applying
activation separately on real and imaginary values30,31, applying acti-
vation based on intensity17,32–35 and applying activation based on
phase36,37. However, most of the methods often does not account for
the crucial relationship between the amplitude and phase of the
complex value, which can only be addressed by an activation function
that operates on both38. Here, we propose a phase-relevant AF device
using graphene/silicon (Gra/Si) heterojunction integrated in MRR
(Fig. 2a), which functions as modulator and photodetector in a single
device. The opticalmodulation is achieved byplasmadispersion effect
of the silicon waveguide39 and doping of the graphene, which mod-
ulate both the resonance wavelength and coupling strength of the
MRR. The extensively studied light detecting ability of graphene and
graphene/silicon junction40–43 has also been utilized. Experimentally, a
modulation voltage (power) of 1 V (0.5mW)was obtained in our Gra/Si
device, lower than many pure silicon devices44–46. In the photodetec-
tion aspect, the high responsivity of over 200mA/W is realized at 1.5 V
bias. The dual-functional property allows the device to achieve high
reconfigurability. The modulator-detector-in-one feature guarantees
shorter time delay, lower energy consumption, and higher integration
density than other AF units. In the meanwhile, the MRR provides
wavelength-sensitive phase tuning to the AF units.With thementioned
advantages, our devices can create activation functions with unique
nonlinearity other than conventional ones22 with phase-tuning infor-
mation included (see Table S3 in Section V in the Supplementary
Information for quantitative comparison among AF devices). A
complex-valued ONN considering phase activation is built in a com-
puter and trained with the phase-activated AFs from our devices, as
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depicted in Fig. 1c. Image classification tasks using MNIST and CIFAR-
10 datasets were challenged. Our AFs enable faster convergence speed
and higher accuracy. The Gra/Si heterojunction in this work has pro-
posed a positive perspective on future two-dimensional materials
photonic networks.

Results
Device description and operation principles
The device’s structure is illustrated in Fig. 2a and details of the layered
device are demonstrated in the inset. Our device was fabricated on a
standard silicon photonics platform using a silicon-on-insulator (SOI)
substrate by multi-project-wafer (MPW) involved processes (see
“Methods”). The photonic structure consists of a ring resonator with a
radius of 40μm.The graphenewas transferredmonolithically onto the
wafer by a standard wet-transfer process. Finally, it formed the gra-
phene/silicon heterojunction with the lightly n-doped waveguide
(Fig. 2b). The Raman spectrum in Fig. 2c indicates that the graphene is
single-layered and measured current-voltage curve (Fig. 2d) coincides
with the electric characteristic of a Schottky diode (more detailed
Raman analysis please see Section I in Supplementary Information). In
such a Schottky device, carrier engineering can be used to modify the

Fermi level (absorption) of graphene47 and the refractive index of
silicon waveguides46 (plasma dispersion effect), thereby modulating
theoptical signal. In themeantime, graphene also functions as a photo-
detecting material48. The operation principle is explained by the band
structure of Gra/Si junction as depicted in Fig. 2e. Under forward bias,
the positively charged p-doped graphene has a higher Fermi level and,
consequently, is less absorbent. As for the silicon surface, the width of
the space charge region is compressed, leading to a larger equivalent
doping concentration (smaller refractive index39) of the slightly
n-doped siliconwaveguide. In contrast, graphene is negatively charged
under reverse bias, and exhibits increased optical absorption. The
space charge region is wider regarding the siliconwaveguide, bringing
reduced doping concentration (larger refractive index). In the pre-
sence of a large forward bias (Fig. 2e.iv), the carrier concentration of
the silicon is high, and the free carrier absorption dominates49. Such
functionalities were demonstrated in ring resonators. With the reso-
nant effect, the modulation power is lower than that of non-resonant
structures, and the photodetection is more sensitive due to the light
trapping inside. In addition, during the tuning of resonance wave-
length, the phase of the output light is also modulated and very sen-
sitive to the position of resonance wavelength (see Section VII in

Fig. 2 | Schematic illustration, properties and operation principle of the gra-
phene/silicon heterojunction. a Three-dimensional schematic of the graphene/
silicon heterojunction device. Inset is the cross-section of the heterojunction
structure before photoresist coating. b SEM image of the top-view of the hetero-
structure. c Raman spectrum of the graphene. d Current-voltage curve of the
heterojunction indicating that the device is a heterojunction. e Energy-band dia-
grams of Gra/Si heterostructure. i thermal equilibrium and dark cases at 0 bias. Ef0,

EC and EV are the initial Fermi level of the heterojunction, conduction-band bottom
and valence-band top of silicon, respectively. ii: band structure under forward bias
condition. Efs is Fermi level the silicon. iii: band structure at reverse bias. iv: band
structure at large forward bias where the free carrier absorption dominates. The
space charge regions are plotted inwheat-colored blocks and the surface states are
marked (+) at the Gra/Si interface.
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Supplementary Information), exhibiting complex modulation of the
optical field.

Device performances
The modulation performance of the fabricated devices with 50-μm-
long graphene (device 1) was characterized, and the results are shown
in Fig. 3. The transmission spectra under different voltages (Fig. 3a)

indicate that both the refractive index and the absorption of the active
area are tuned by electric driving as discussed. The carrier transfer
process differs under different bias conditions; therefore, the effective
refractive index(neff) and absorption of the active area result in con-
trasting spectra characterizations. The black dashed curve is the
transmission under zero bias. At reverse bias, the resonance wave-
length redshifts, and the full width at half maxima of the resonance

Fig. 3 | Device performances as both a modulator and a detector. a Normalized
transmission spectra under different voltages. b Modulation extinction ratio at
different voltage ranges. c Wavelength shift at different bias. d Q factor and cal-
culated loss (over coupling) at different voltages. e Photo-currents and (f)

responsivity at and not at resonance wavelength. g Wavelength-dependent
responsivity under different bias. h Photo-currents and (i) responsivity under dif-
ferent optical power interaction at different bias voltages.
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peak becomes wider (smaller Q factor as shown in Fig. 3d). A larger
refractive index of the silicon waveguide and larger absorption of
graphene was calculated in Fig. 3c, coinciding with the results. Under
forward bias, the resonance wavelength blueshifts until the bias vol-
tage approaches 1 V, which also agrees with the band structure analy-
sis. In response to increasing voltages over 1 V, the resonance redshifts
and shifts faster (Fig. 3c), which could be a result of thermo-optic
effects. Hence, our devices can work in carrier injection, carrier
depletion, and thermos-optic regions. The modulation depth (extinc-
tion ratio) under different voltages below the thermos-optic region is
depicted in the lower part of Fig. 2b. Modulation depth exceeding
12 dB can be achieved with a lowmodulation voltage (power) of about
1 V (0.5mW), which is smaller than mid-infrared p-n or p-i-n silicon
modulators ever reported50–53. As for the other two shownmodulation
operations (−1 V to 1 V and 0V to 2 V), the largest modulation power is
about 2.7mW, which is also a relatively small value (please see
Table S2. in Section IV in Supplementary Information). Then, the
detection characterization of our device was performed (Figs. 3e - 2i).
As our device is a resonant structure, the photocurrent and respon-
sivity of the resonance wavelength and non-resonance wavelength
under a bias of 1.5 V are compared, as shown in Fig. 3e and Fig. 3f. And
wavelength-resolved responsivity spectra were measured under dif-
ferent bias voltages (Fig. 3g). Input light in resonance wavelength can
produce much larger photocurrent and responsivity. Therefore, our
device works as a narrow-band detector. The photocurrent and
responsivity at resonance wavelength under different bias voltages
and input optical power are illustrated in Figs. 3h and 2i, respectively.
Responsivity higher than 200mA/W can be achieved for input optical
power smaller than 100 μW, which exhibits the highest responsivity
among the state-of-the-art 2-μm-band graphene-silicon photo-
detectors, according to the performance comparison inTable S2 in the
Supplementary Information. The responsivity for the microwatt-level
optical signal can exceed 1 A/W, because the trap states of the
graphene-silicon interface prolonged the lifetime of the photo-
induced carriers before recombination, leading to the gain which lar-
gely improved the responsivity. When optical power increases, the
excited electrons contribute to fill the unoccupied states in the gra-
phene to a certain level limited by the photon energy (wavelength).
After that, extra incident power (a greater number of photons) will not
be absorbed and consequently the photocurrent-power curve become
flattened, together with a decreasing responsivity. At 3 V, both pho-
tocurrent and responsivity dropped due to a reduced Q factor and
increased free carrier absorption (Fig. 3d).

Generation of activation functions and ONN training
According to the results in Fig. 3, both the output power and photo-
current can be tuned by applying different bias voltages and input
optical power. Hence, utilizing the modulation-detection-in-one fea-
tures of our devices, anon-chip photonic nonlinear activation function
with phase tuning for an optical neural network with an ultralow
optical power threshold is proposed and validated. The proposed
integrated neural network chip system is demonstrated in Fig. 4a. The
nonlinearity can be achieved by introducing a photocurrent mea-
surement of the voltage feedback mechanism. An integrated circuit
(IC) that can apply bias voltage Vin andmeasure photocurrent Ip can be
designed and integrated with the photonic devices so that the bias
voltage can be tuned based on the photocurrent variation. Conse-
quently, a transfer function V 0

in =HðIp,VinÞ between bias voltage Vin
and tuned voltage V 0

in can be programmed into the IC. An easy-to-be-
implemented HðIp,VinÞ is a photocurrent stabilizing circuit. Activation
functions were generated from two devices using current stabi-
lizingHðIp,VinÞ. As depicted in Fig. 4b, photocurrent and transmission
of device 1 at the wavelength of 2026.31 nm under different voltages
and optical input power were obtained. Photocurrent contours of 1 μA
and 2 μA are plotted within the filled contour and mapped to the

transmission surface. As a result, the relation between the transmission
and input power can be established, and two AFs were extracted and
plotted in scattering points. The same operation was performed for
device 2 (with a graphene length of 20 μm) at 2012.71 nm, and results
are shown in Fig. 4cwith three activation functions using photocurrent
contours of 0.2 μA and 0.4 μA (more characterization results can be
found in Section VI in Supplementary Information). All the AFs with
phase shift are demonstrated in Fig. 4d. The phase shift was extracted
from equations in Ref. 54 and detailed phase shift deduction is
demonstrated in Section VII in Supplementary Information. The con-
figurability of our devices has been proved by the above results that a
single device can generate several activation functions by applying
different transfer functions related to different photocurrent con-
stants. Even with the sameHðIp,VinÞ, different activation functions can
also be obtained by choosing different voltage zones. Last but not
least, the activation threshold of input optical power as low as 10 μW
was achieved, which is order(s) of magnitude lower than other
reported results16,23,55. Under the above approach, compared to other
types of AF devices, our devices can generate complex activation
functions with more reconfigurability, simpler operation, lower power
consumption and optical threshold (see Table S3 in Section V in the
Supplementary Information).

The validity of our optical activation functions is investigated by
two complex-valued neural networks in MNIST dataset and CIFAR-10
dataset, respectively. Thenetwork structures are illustrated in Fig. S13 in
Supplementary Information. The two networks shown in Fig. S13 are
based on LeNet56 and ResNet-3457, redesigned to adapt to complex-
valued convolution and the size of the corresponding dataset. Themax
pooling layers and fully connected layers of the original network are
replaced by a single global average pooling layer, as those layers are
unsuitable for optical neural networks. The network’s performance is
measured in terms of accuracy on the MNIST dataset and CIFAR-10
dataset. Both datasets consist of ten classeswith 6000 images per class.
The standard train/test split is class-balanced and contains 50,000
training images and 10,000 test images. To monitor the training pro-
cess, the training set is further split into 40,000 true training images
and 10,000 validation images. Images of the CIFAR-10 dataset are RGB-
colored with a size of 32 × 32 pixels, and images of the MNIST dataset
are grayscale with a size of 28 × 28 value.We duplicate the real values to
both real and imaginary parts for input to the network.

Comparison between our generated optical activation functions
against other commonly used activation functions is performed by
constructing two complex neural networks for the MNIST dataset and
CIFAR-10 dataset. This comparison involved three classical activation
functions of real-valued neural networks: Tanh, Arctan and Softsign,
our designed optical activation functions, with the identity function
(no activation) as the baseline. A diagramof the transmission functions
of various activation functions is shown in Section IX in Supplementary
Information. We consider the phase shift relative to intensity for our
activation functions, and assume it to be 0 for classical ones. We
choose

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� gðxÞ
p

as our used activation function that operates on the
complex amplitude in order to avoid vanishing gradients by increasing
the average transmission rate, where gðxÞ is the transmission rate. The
square root corresponds to the relationship between complex ampli-
tude and intensity. A spline interpolation is applied to the data points
of our measurement to obtain an analytical piecewise function avail-
able for back propagation (see Section IX, X in Supplementary
Information).

The training and validation results are depicted in Fig. 5. The
training loss (defined as cross-entropy loss) and validation accuracy
curves of the complex-valued optical neural networks with different
activation functions are demonstrated in Fig. 5b, f. (Comparison
between more activation functions can be seen in Section XI in Sup-
plementary Information). The solid dot lines are the average results
from 5 training sessions. Our optical activation function shows amuch
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better loss in the MNIST dataset, indicating a faster convergence
speed. The best optical activation function 3 shows a 7% accuracy
advantage in both the validation set and test set over the ArcTan
(which has the best performance of the classical function in our
training) with a loss advantage of 1.5. Moreover, our best optical acti-
vation function shows a solid leadover classical functions in theCIFAR-
10 dataset, with an 8% accuracy advantage in both the validation set
and test set, and convergesmuch faster over the ArcTan, which has the
best performance compared with the classical function. It also
demonstrates smaller loss values and faster loss reduction versus
training rounds. These advantages are due to the transmission rate
falling to zero for larger input values for classical functions. Anear-zero
transmission will result in zero gradient values, prohibiting updating
network weights. Besides, it is also possible that the better training
results originating from our functions are segmented (Section IX in
Supplementary Information), which offers more flexible approxima-
tion abilities than smooth functions. The confusion matrices for
10,000 test data set images for different activations are presented in
Fig. 5c, g, consistent with the training results. The phase information
makes a vital difference in the networks’ performance (Section XII in

Supplementary Information). Obviously, our functions canmanipulate
phase-based intensity, thus taking advantage of complex functions to
produce better training results.

A closer analysis of the trained networks is demonstrated in
Fig. 5d, h, which shows the visualizedoutput of eachblock in theneural
network, colored based on the intensity values. Our proposed optical
activation function shows a much smoother activation map than
classical activation functions (see more results in Section XIII in Sup-
plementary Information), with more solid prediction values for the
same input compared with the classical activation functions, which
proves that the proposed activation function contributes towards
stable training of the neural network. A more thorough comparison
involving more classical and optical activation functions and the
impact of the phase shift can be found in the supplementarymaterials.

In conclusion, we experimentally demonstrated graphene/silicon
heterojunction as modulator and detector in one device, which could
operate as a reconfigurable phase-activated optical activation function
device to provide a more flexible solution for optical neural networks.
Thedual-functional devices can beprogrammed toproduce anonlinear
optical response by detecting and modulating the optical signal

Fig. 4 | Generation mechanism and results of optical activation fucntions.
aBlockdiagramof photonic neural network integratedwithour activation function
devices. b, c Photocurrent and transmission versus bias voltage and input power of
device 1 anddevice 2, respectively. Blackdashed lines in thefilledcontoursofphoto
current represent the current contours to generate activation functions. Black solid

lines in the transmission surface are the corresponding transmissionmapped from
the photocurrent contours. The scattering plots are data points of the extracted
activation functions. d Five activation functions with transmission and phase shift
information deduced from device 1 and device 2 corresponding to different pho-
tocurrent contours.
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simultaneously. The generated activation functions are more effective
and efficient than classical activation functions within the same neural
network. The Gra/Si heterojunction on MRR is highly designable and
exhibit high reliability (Section VI in the Supplementary Information).
Last but not least, as our device can tune the optical intensity, it can also
be adopted in the weight matrix part of the optical neural network,
which deserves further exploration. We believe this work is promising
for future large-scale chip-level optical neural networks.

Methods
Device fabrication
The fabrication steps and flowchart are described in detail in Section II
in the supplementary information, where structural details of our
devices can also befound.

Device characterization
Please see Section III in the Supplementary Information.

Data availability
All the data supporting this study are available in the paper and Sup-
plementary Information. Additional data related to this paper are
available from the corresponding authors upon request.
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